
TDA Progress Report 42-117

N94- 35559

May 15, 1994

The Development and Application of Composite Complexity

Models and a Relative Complexity Metric in a
Software Maintenance Environment

J. M. Hops

Radio Frequencyand Microwave Subsystems Section

J. S. Sherif

Software Product Assurance Section

and

CaliforniaState University, Fullerton

A great deal of effort is now being devoted to the study, analysis, prediction,
and minimization of software maintenance expected cost, long before software is

delivered to users or customers. It has been estimated that, on the average, the

effort spent on software maintenance is as costly as the effort spent on all other

software costs. Software design methods should be the starting point to aid in al-

leviating the problems of software maintenance complexity and high costs. Two

aspects of maintenance deserve attention: (1) protocols for locating and rectifying
defects, and for ensuring that no new defects are introduced in the development

phase of the software process, and (2) protocols for modification, enhancement, and

upgrading. This article focuses primarily on the second aspect, the development of

protocols to help increase the quality and reduce the costs associated with modi-

fications, enhancements, and upgrades of existing software. This study developed

parsimonious models and a relative complexity metric for complexity measurement
of software that were used to rank the modules in the system relative to one an-

other. Some success was achieved in using the models and the relative metric to

identify maintenance-prone modules.

I. Introduction

A. Project Objectives

The primary objective of this study was to determine

whether software metrics could help guide our efforts in

the development and maintenance of the real-time embed-
ded systems that we develop for NASA's Deep Space Net-

work (DSN). Generally, the systems that are developed
control receivers, transmitters, exciters, and signal paths

through the communication hardware. The most common

programming language in our systems is PL/M for Intel
8080, 8086, and 80286 microprocessors; and the systems

range in size from 20,000 to 100,000 non-commented lines

of code (NCLOC). Approximately 65 percent of the fund-

194

OD
"10

_o
p..
<
n.-
>-
t-

z
LU
n

,-r"
I.-
O
LLI
0...
GO
LU
GO
5
Z
6

z

GO
Q..
O

q
,"t"
LLI
E:
nC
<
O

50

45

40

35

30

25

20

15

10

2O

1 I I I

UPLINK
COMMAND OFF

UPLINK
COMMAND ON

m = 70 deg

fs = 1 MHz

I I I I
30 40 50 60

TOTAL RECEIVED SIGNAL-TO-NOISE SPECTRAL
DENSITY RATIO, dB-Hz

uJ
- I:

.%
(3
z
v

- <o
r,r
I--

7O

Fig. 13. Carrier loop received signal-to-noise spectral density

ratio versus total received signal-to-noise spectral density ratio.

°16 L

0.14

0.12

0.10

0.08

0.06

I I I I I I

BILINEAR, IMPULSE
INVARIANT, AND STEP

INVARIANT)

UPLINK COMMAND-ON

m = 70deg

fsc = 32 kHz

FS = 1 MHz

RS = 2 kbits/sec

0.04

0.02

0
30 35 40 45 50 58 60 65

TOTAL RECEIVED SIGNAL-TO-NOISE SPECTRAL

DENSITY RATIO, dB-Hz

Fig. 14. Comparison of theoretical and simulated tracking phase

jitter.

193

ing received in our environment is dedicated to extending

the life span of the previously developed systems; of this,

15 percent is spent on finding and fixing defects, while

85 percent is spent on adding automation features, adding

capabilities, and increasing capacity.

or abandoned; and 30 percent was paid for, but was never
delivered.

For the study described in this article, we took the fol-

lowing steps:

Our efforts have been successful in that the life spans of

our systems now range from 4 to 8 years and are increas-

ing. As support for new spacecraft becomes necessary,
these older systems are being used in new ways, thereby

increasing the importance of high-quality, defect-free, and
cost-effective enhancements to the software. Protocols and

guidance for locating and rectifying defects in the software-
sustaining environment were deemed critical, especially

with the added complications that the maintainers of the

systems are not the original developers and that there is
little or no confidence in the software documentation.

Specifically, we were looking for ways to identify which

modules should be reengineered and which modules would

need extra development and test time in order to main-

tain. The problems we face in our environment are quite

common in the industry. Software maintenance cost is

about two to four times the original development cost

[3,13,10,21]. Charette [5] emphasizes the fact that 60 to
80 percent of the total software costs are related to main-

tenance. This will likely remain so for the indefinite future

[7,11,24].

Figure 1 shows the initial cost breakdown in develop-

ing a new project (unfortunately with maintenance costs

hidden), and Fig. 2 shows the costs of software during its
life cycle, as discussed by Zelkowitz [34]. Software mainte-

nance is not what people think it is: Software maintenance

actually encompasses fixing software errors in addition to
software enhancements and adding new functions to exist-

ing systems, system conversion, training and supporting

users, and improving system performance [31-33]. Error
correction, which is often perceived as the substance of

maintenance, is only a small part of the software main-

tenance effort [8,4]. Table 1 shows the distribution of

the average time spent on various maintenance tasks for

4 years, as reported by Lientz and Swanson [19]. Note that
functional enhancement constitutes the major portion of

the time spent on software maintenance. Charette [5] dis-
cusses another reason why the cost of software is so high

and cites some statistics as reported by the Comptroller

General [6] and as shown in Table 2. It is reported that
only 2 percent of the software contracted for could work on

delivery; 3 percent could work after some rework; 45 per-

cent was delivered, but was never successfully put to use;

20 percent was used, but was either extensively reworked

(1) Determined what the literature suggests.

(2) Developed a course of action to be tried on one of our
operational systems that would be representative of
all the others.

(3) Performed the steps and analyzed the results.

The process and results of each of these steps are de-
scribed below.

B. Suggestions from the Literature and Course

of Action

One of the earlier studies encountered pertaining to

our objectives was undertaken by Shen, Yu, Thebaut, and

Paulsen [27]. They assessed the potential usefulness of

product and process metrics in identifying components of

the system that were most likely to contain errors. Their

goal was to establish an empirical basis for the use of ob-

jective criteria in developing strategies for the allocation

of testing effort in the software-maintenance environment.
It was found that the number of unique operands, as de-

fined by Halstead [14], was the best predictor of problem

reports on modules that were reported after the initial

delivery. Additionally, simple metrics related to the num-

ber of unique operands, such as the cyclomatic complexity

(defined by McCabe [20]), also performed well. Shen et al.
concluded that these metrics are useful in finding error-

prone modules at an early stage [27].

In 1987, Kafura and Reddy [17] published the results

of their study on using software complexity metrics during

the software maintenance phase of a system. They related

seven separate metrics to the experience of maintenance
activities on medium-sized systems. Two of the results re-

ported were that the overall complexity of a system grows
with time and that the individual complexity scores of the

software modules agree well with the expert opinions of

the programmers. Their conclusion was that metrics could
form the control element in a formal maintenance method.

Harrison and Cook [15,16] discuss the decision, fre-

quently encountered by software maintenance personnel,
of whether to make an isolated change in a module or

to totally redesign and rewrite the module anew. They

developed an objective decision rule to identify modules

195

that should be rewritten rather than modified. This de-

cision rule is whether the total change in the Halstead
software science volume metric exceeds a threshold value.

This threshold value seems to be subjective since it de-

pends upon the decision maker's risk-taking propensity

and experience and since it must be tuned for a partic-
ular environment.

Lennselius, Wohlin, and Vrana [18] discuss the possi-

bility of using complexity metrics to identify error-prone,

and thus mMntenance-prone, modules. They suggest that

a module whose complexity lies at least one standard de-

viation above the acceptable mean of complexity of the

project may be considered to be a maintenance-prone
module. The authors, however, emphasize that metrics

cannot replace the decision-making process of software

managers.

Rodriguez and Tsai [23] use discriminant analysis to de-

velop a methodology to evaluate software metrics. They

suggest that when classifying units of software as either
complex or normal, more attention is usually paid to the

complex group to either redesign it or test it more thor-

oughly. Their methodology is based on the assumption of

normal distribution and homogeneity of variances of the

two groups. The authors consider 13 metrics depicting
Halstead's software science metrics, McCabe complexity

metrics, and NCLOC metrics. They conclude that these
metrics are correlated.

Stalhane [29] discusses how to estimate the number of
defects in a software unit from various software metrics

and how to estimate the reliability of the same software.

The author also concludes that complexity increases as
the size of code increases. Stalhane asserts that misunder-

standing the specifications will increase with the specifica-
tion complexity and that complexity may be transferred

to tile code and thus lead to maintenance-prone complex

code and complex modules.

Munson and Khoshgoftaar [21] employ factor analytic

techniques to reduce the dimensionality of the complexity

problem space to produce a set of reduced metrics. The re-

duced complexity metrics are subsequently combined into

a single relative complexity measure for the purpose of

comparing and classifying programs. In particular, the
relative complexity metric can be seen to represent the

complexity of a particular software module at a particular

level of system release. The authors investigate McCabe

complexity metrics, Halstead software science metrics, and

NCLOC metrics. The comparison of complexity is again
of a relative and subjective nature.

Binder and Poore [2] investigate the possibility of in-

cluding the number of comments in the code as a variable

in determining the quality of the code. They assert that

comments only contribute to quality when they are needed

and meaningful. The authors suggest a software quality

measure called the "LB-ratio," which is defined as the ra-

tio of the number of operators to the sum of the number of

operands and the number of comments. The authors agree

that their experiments with the LB-ratio need additional

work and refinement since including the concept of mean-

ingful comments in the formula seems to be problematic
and subjective at best.

The following suggestions were deduced from these
sources:

(1) An estimate of errors and reliability can be deter-

mined from software product metrics [20,27,29].

(2) Software product metrics could be used to find error-
prone modules and could form the control element in

a formal software maintenance methodology [15-18].

(3) The software product metrics that may be consid-
ered include all of Halstead's software science met-

rics, McCabe's complexity metric [14,23,27], and
NCLOC [21].

(4) Factor analysis can be used to identify those software

measures that are highly and significantly related to
all other measures. This economy of description will

facilitate the analysis of software complexity [21].

(5) Comments in the code contribute to the quality of

software [2].

We therefore took the following actions:

(1) Determined the Halstead software science, McCabe

complexity, NCLOC, and LB-ratio from sequential

releases of a representative software system.

(2) Performed factor analysis on the metrics from the

software modules to determine the unique dimen-
sions represented by the metrics.

(3) Proposed a model to calculate a relative metric.

(4) Determined if this metric can identify maintenance-

prone modules in the software by using the mean-
plus-one standard deviation as the relative metric
cut-off value.

196

II. Method, Analysis, and Results

A. Representative System and Metrics Collection

1. Nature of Software. We analyzed the source

program in the very long baseline interferometry (VLBI)

receiver controller (VRC) software system by using factor

analysis for 16 software measures. The source program is
a real-time embedded system in the receiver exciter sub-

system of NASA's DSN. It serves as a communication in-

terface to VLBI subsystems and configures and monitors
the status of the narrow-channel bandwidth VLBI receiver

assembly. Three releases of the system software were an-

alyzed: OP-B (222 modules), OP-C (224 modules), and a

draft version of OP-D (235 modules). These were used as

a representative maintenance project in this study. The
source code for these three releases was originally written

in PL/M but was later converted to C using the PLC86

conversion program (from Micro-Processor Services).

2. Software Metrics and Measures. Software met-

rics are quantitative measures of certain characteristics of

a development project that can be valuable management

and engineering tools. Software metrics can be used to

achieve various project-specific results, such as predicting

source-code complexity at the design phase; monitoring

and controlling software reliability and functionality; pre-

dicting cost and schedule; and identifying high-risk mod-

ules in a software project [28].

The 16 software measures that were used to analyze

the VRC software are given in Table 3. The first eight

measures belong to the Halstead software science family of

software complexity measures. Halstead [14] uses a series

of software science equations to measure the complexity

of a program based on the lexical counts of symbols used.
Generally, the measurements are made for each module,
and the total measurements of the modules constitute the

measurement of the program. Ha[stead's metrics become

available only after the coding is done, and therefore can

be of use only during the testing and maintenance phases.

Although Halstead's metrics are useful in determining the
complexity of programs, their weaknesses are that they

do not measure control flow complexity and have little

predictive value.

Measures 9 and 10, i.e., VG1 and VG2, belong to Mc-

Cabe and were adapted from the mathematical concepts

of graph theory. McCabe cyclomatic complexity metric
VG1 is a measure of the maximum number of linearly in-

dependent circuits in a program control graph. The pri-

mary purpose of this metric is to identify software modules
that will be difficult to test or maintain, as explained by

McCabe [20]. The value of the McCabe metric is avail-

able only after the detailed design is done. Although the
McCabe metric is very useful for measuring control flow

complexity, its weakness is that it is not sensitive to pro-

gram size; for example, if programs of different sizes are

composed exclusively of sequential statements, then they

may have the same cyclomatic number.

Measures 11 15 deal with the size of the program or

the number of lines. Although many researchers do not

find this measure as appealing, Boehm [3] points out that

no other metric has a clear advantage over NCLOC as

a metric. It is easy to measure, is conceptually familiar

to software developers, and is used in most productivity
databases and cost estimation models.

Measure 16, the LB-ratio, is defined by Binder and

Poore [2] as the ratio of the number of operators to the
sum of the number of operands and the number of com-

ments. It appears to capture the idea of distinguishing

between meaningful comments in the code and just com-

ments in general. The weakness of this metric is its re-
liance on defining the number of meaningful comments,

which seems to be more subjective than quantitative.

B. Analysis of Data, Models, and Validation

The 16 software measures of the three releases of the

VRC code, OP-B, OP-C, and draft OP-D, were analyzed

using factor analysis, correlation, analysis of variance, and

regression analysis. Table 4 shows the number of modules

and the mean value per module for each of the 16 measures.

Figures 3-5 show the correlation matrix of the 16 mea-
sures for the three releases. The data show a high degree

of correlation. Except for the LB-ratio measure, the re-

maining 15 measures are highly correlated. It can be seen
that the Halstead volume metric (V), the McCabe cyclo-

matic complexity metric (VG1), and the NCLOC metric

are highly and significantly correlated, while the LB-ratio
metric is not. These results agree with those of other re-

searchers, such as Ramamurthy and Melton [22], Gill and

Kemerer [12], Samadzadeh and Nandakumar [25], Basili
and Hutchins [1], Evangelist [9], and Kafura and Reddy

[17].

The factor analysis matrix is shown in Table 5. All

measures except the LB-ratio are loaded on factor 1, and

thus there is no cross-loading. This is a desired result,

since cross-loading on many factors makes the interpre-

tation of the result ambiguous. The analysis of variance
of the three sets of releases did not show any significant

difference at the level of significance of 0.05. This means

that, on the average, the values of, say, the McCabe cyclo-
matic complexity metric (VG1) of the three releases are

197

not significantly different at alpha of 5 percent. The same
is also true for the other 15 measures.

discussed by Valett and McGarry [30], Harrison and Cook

[15], and Schneidewind [26].

Regression analysis had been used to develop models

of relationships of the most interrelated measures. These

are the Halstead volume metric (V), the McCabe cyclo-
matic metric (VG1), and the non-commented lines of code

(NCLOC) metric, as discussed next.

1. Factor Analysis Discussion. Three releases of

software were analyzed by factor analysis to show the ex-

istence of meaningful relationships among known software

complexity measures. The analysis shows the number of

factors where software complexity measures tend to load

high or low, and also the percentage of the variability ex-

plained by each factor. This research also shows the matrix

of correlation summarizing the relationships among the 16

software complexity measures for each release.

Factor analysis of the three releases of software had

shown that the first 15 measures of complexity are closely

related to some measure of similarity and are consequently
all interrelated. However, the 16th complexity measure

(LB-ratio) does not seem to be typical of the other 15

measures, and thus it is unlike the rest of the data set.

The 3 releases show 2 factors that concisely state the pat-

tern of relationship, s within the 16 measures. However,
measures 1-15 load most strongly on the first factor with

explained variability of 90 to 91 percent, while the sec-

ond factor displays less interesting patterns with loading

of 9 to 10 percent. Factor analysis had also shown that

three complexity measures, the McCabe cyclomatic com-

plexity metric (VG1), the Halstead volume metric (V),

and (NCLOC), are highly and strongly related. There-

fore, in order to achieve an economy of description, these

three measures are considered to give a strong similarity
and representation of all the 15 measures.

The correlation matrix for each release of the software

also shows that the first 15 complexity measures are re-
lated, while the LB-ratio measure is not related or inter-

related to any of tile other 15 measures.

Analysis of variance does not show any significant dif-

ference between the three releases at the level of signif-
icance of 5 percent. This means that as the software

evolves through its releases, the interrelationships between

the complexity measures seem to be preserved. However,

we should note that without normalization to size, adding

on to a program will make a more complex program. This

scents to agree with the findings of other researchers, as

Since factor analysis techniques showed that the first

15 software measures are closely related to some measure

of similarity, and since 3 of these measures, the McCabe

cyclomatic complexity metric (VG1), the Halstead volume

metric (V), and the NCLOC metric, are highly and signifi-

cantly related, they are considered to give a strong similar-

ity and representation of all 15 measures. This economy of

description made it appealing to develop a set of parsimo-

nious models for software complexity measurements using

data from the three software releases. The five composite
models together with their coefficients of determination

(R 2) are shown in Table 6.

Statistical analysis, model back testing, and model test-

ing with independent segments of software are used for

validation of the composite models and ascertaining their
degree of accuracy. The developed models had shown a

high degree of accuracy in predicting software complexity,

and thus they can serve as a baseline for other software

projects in identifying software modules with high com-

plexity (maintenance prone), so that actions can be taken
before their release to users.

2. Back Testing of Models. The five composite
complexity models shown in Table 6 were checked with

actual data from the three releases, OP-B, OP-C, and

OP-D. Table 7 and Fig. 6 show the actual average values

of the dependent variables (VG1) and values predicted by

the first three models. Table 8 and Fig. 7 show the ac-

tual average values of (V) and values predicted by models

4 and 5. It can be seen that the difference in predicting

(VG1) by the first three composite models ranges from 3.2

to 10.6 percent below the actual average value of (VG1),

as calculated by the McCabe cyclomatic complexity met-

ric. Also, the difference in predicting (V) by models 4 and

5 ranges from 1.2 to 1.3 percent above the actual average
value of (V), as calculated by Halstead's volume metric.

3. Testing the Five Composite Models by Exter-

nal Check. The five composite complexity models were

tested against four independent segments of software with

characteristics as shown in Table 9. A sample calculation

of actual average values of (VG1) and values predicted by
model 1 for the four segments of software is shown in Ta-

ble 10. The summary of the actual grand average values
of (VG1) and (V) and their values, as predicted by models

1, 2, and 3 and models 4 and 5, respectively, for the four

segments of software, is shown in Tables 11 and 12 and

198

Figs. 8 and 9. It can be seen that the difference in predict-

ing (VG1) by the first three composite models ranges from

17.3 percent below to 0.7 percent above the actual aver-

age value of (VG1). Also, the difference in predicting (V)

by models 4 and 5 is 9.7 percent above the actual average

value of (1/) for the four segments of software.

C. Parsimonious Model and Relative Complexity

Since the five complexity models developed in this

study show direct relationships between (VG1) and (V)

and also (NCLOC), we chose the third model,

< VGI> = 0.786 + O.O013(V) + O.0976(NCLOC)

as a representative model for estimating the value of

(VG1), given the measured values of (V) and (NCLOC).

1. Development of the Relative Complexity

Metric. We propose to capture the total complexity of

a program based on its control flow complexity, the lex-
ical counts of symbols used, and the program size. In

essence, a complexity metric that accounts for a program

total complexity due to volume and control flow and nor-

malized by the number of lines of code would present a

relative complexity metric that is more useful to consider

for detecting maintenance-prone programs. The relative

complexity metric (RCM) will be derived for each module

from the measured value of (V), the estimated value of

(VGz) from model 3, and normalized by the module lines
of code. The RCM for a module is

< VG1 > +V)
(R C M)i = \ -_-_--£--0_ J i

2. Analysis of the Three Releases Using the Rel-

ative Complexity Metric. The RCM was used to an-

alyze the modules of the three releases, as shown in Ta-

ble 13. Note that, as reported by Kafura and Reddy [17],

the RCM has grown with each release, from a 2799 total
in_0P-B to a 3470 total in the draft of OP-D.

Using the criterion of the mean relative complexity

value plus one standard deviation as a cut-off value for

acceptable modules, we can identify those modules that

can be considered as outliers, or maintenance-prone mod-

ules. Results for the three releases are given in Table 14.

In order to determine whether the modules above the

cut-off value were more at risk to be modified for enhance-

ment or fixes than modules below the cut-off value, the
transitions between the releases were examined. The re-

sults appear in Table 15. Of the 33 modules over the

cut-off value of RCM in OP-B, 40 percent were actually

modified in order to implement OP-C. Of the 36 modules

in OP-C over OP-C's RCM cut-off value, 50 percent were

actually modified to implement the draft version of OP-D.

Although the cut-off value seems to evenly divide the

modules that were actually modified, the modules over the

cut-off value for each release were more likely to be changed
than the modules below the cut-off value. The RCM was,

therefore, able to identify maintenance-prone modules.

III. Discussion and Conclusion

Given that a metric that measures software complexity

should prove to be a useful predictor of software mainte-

nance costs, it is recommended that modules that show a

high order of complexity within a release be looked upon as

modules with a propensity to become maintenance prone

after release and delivery to users. It is imperative that

a maintenance-prone module be improved, enhanced, or

simplified into two or more modules before final delivery.
The composite complexity models and the relative com-

plexity metric developed in this study can be considered

as a baseline for comparison with other projects and may

serve as a set point for simplifying and reducing complex-

ity of developed software.

Acknowledgments

The authors would like to express their sincere thanks to Dr. Harry Detweiler,

Manager, Dr. William J. Hurd, Deputy Manager, and Paul A. Willis, Supervi-

sor, Radio Frequency and Microwave Subsystems Section; Dr. Robert C. Taus-

worthe, Chief Technologist, Information Systems Division; and Dr. Donald S. Re-
mer, Telecommunications and Data Acquisition Planning, for comments and sug-

gestions that greatly improved this article.

199

References

[1] V. R. Basili and D. H. Hutchins, "An Empirical Study of a Synthetic Complexity

Family," IEEE Transactions on Software Engineering, vol. 9, no. 6, pp. 664-672,
November 1983.

[2] L. H. Binder and J. H. Poore, "Field Experiments With Local Software Quality
Metrics," Software Practice and Experience, vol. 20, no. 7, pp. 631-647, July
1990.

[3] B. Boehm, Software Engineering Economics, Englewood Cliffs, New Jersey:
Prentice Hall, 1981.

[4] B. Boehm and P. Papaccio, "Understanding and Controlling Software Costs,"
IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1462 1477,
October 1988.

[5] R. N. Charette, Software Engineering Environment, New York: McGraw-Hill,

Inc., 1986.

[6] Comptroller General, Contracting for Computer Software Development, General

Accounting Office Report, FGMSD-80-4, GAO, 1979.

[7] B. Curtis, S. Sheppard, P. Milliman, M. Borst, and T. Love, "Measuring the
Psychological Complexity of Software Maintenance Tasks With the Halstead and

McCabe Metrics," IEEE Transactions on Software Engineering, vol. 5, pp. 96-

104, March 1979.

[8] S. Dekleva, "Software Maintenance: Any News Besides the Name," The Software
Practitioner, vol. 3, no. 3, pp. 5-8, March 1993.

[9] W. M. Evangelist, "Software Complexity Metric Sensitivity to Program Structure
Rules," Journal of Systems and Software, vol. 3, no. 3, pp. 231-243, March 1983.

[10] R. E. Fairley, Software Engineering Concepts, New York: McGraw-Hill, Inc.,
1985.

[11] V. R. Gibson and J. A. Senn, "System Structure and Software Maintenance
Performance," Communications ACM, vol. 32, no. 3, pp. 347-358, March 1989.

[12] G. K. Gill and C. F. Kemerer, "Cyclomatic Complexity Density and Software
Maintenance Productivity," IEEE Transactions on Software Engineering, vol. 17,

no. 12, pp. 1284-1288, December 1991.

[13] R. L. Glass, Software Maintenance Handbook, Englewood Cliffs, New Jersey:
Prentice Hall, Inc., 1981.

[14] M. Halstead, Elements of Software Science, New York: Elsevier North Holland,
Inc., 1977.

[15] W. Harrison and C. Cook, "A Micro/Macro Measure of Software Complexity,"

The Journal of Systems and Software, vol. 7, no. 2, pp. 213-219, August 1987.

[16] W. Harrison and C. Cook, Insights on Improving The Maintenance Process

Through Software Measurements, Naval Ocean Systems Center Report TR 90-4,
N66001-87-D-0136, 1990.

[17] D. Kafura and G. R. Reddy, "The Use of Software Complexity Metrics in Soft-
ware Maintenance," IEEE Transactions on Software Engineering, vol. 13, no. 13,

pp. 335-343, March 1987.

2OO

[18] B. Lennselius, C. Wohlin, and C. Vrana, "Software Metrics: Fault Content Es-
timation and Software Process Control," Microprocessors and Microsystems,

vol. 11, no. 7, pp. 365 375, September 1987.

[19] B. P. Lientz and E. B. Swanson, Software Maintenance Management, Reading,
Massachusetts: Addison-Wesley, 1990.

[20] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engi-
neering, vol. 2, no. 4, pp. 308-320, December 1976.

[21] J. C. Munson and T. M. Khoshgoftaar, "Application of a Relative Complexity
Metric for Software Project Management," Journal of Systems and Software,

col. 12, no. 3, pp. 283-291, July 1990.

[22] B. Ramamurth:_ and A. Melton, "A Synthesis of Software Sciences Measures and

the Cyclomatic Number," IEEE Transactions on Software Engineering, col. 14,

no. 8, pp. 1116-1121, August 1988.

[23] V. Rodriguez and W. T. Tsai, "Evaluation of Software Metrics Using Discrimi-
nant Analysis," Proceedings of the Eleventh Annual International Computer Soft-

ware and Applications Conference, Tokyo, Japan, pp. 245-251, October 1987.

[24] H. D. Rombach, "A Controlled Experiment on the Impact of Software Structure
on Maintainability," IEEE Transactions on Software Engineering, vol. 13, no. 3,

pp. 344-354, March 1987.

[25] M. H. Samadzadeh and K. Nandakumar, "A Study of Software Metrics," Journal
of Systems Software, col. 16, no. 3, pp. 229-234, November 1991.

[26] N. F. Sehneidewind, "Methodology For Validating Software Metrics," IEEE
Transactions on Software Engineering, col. 18, no. 5, pp. 410-422, May 1992.

[27] V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, "Identifying Error-Prone

Software--An Empirical Study," IEEE Transactions on Software Engineering,

col. 11, no. 4, pp. 317-323, April 1985.

[28] Y. S. Sherif, E. Ng, and J. Steinbacher, "Computer Software Development: Qual-

ity Attributes, Measurements and Metrics," Naval Research Logistics, col. 35,

no. 1, pp. 425 436, January 1988.

[29] T. Stalhane, A Discussion of Software Metrics as a Means for Software Reliabil-

ity Evaluation, Report PB89-210322, U.S. Department of Commerce, National
Technical Information Service, 1988.

[30] J. D. Valett and F. E. McGarry, "A Summary of Software Measurement Expe-

riences in the Software Engineering Laboratory," The Journal of Systems and

Software, vol. 9, no. 2, pp. 137 148, February 1989.

[31] I. Vessey and R. Weber, "Some Factors Affecting Program Maintenance: An

Empirical Study," Communications ACM, vo]. 26, no. 2, pp. 128-134, February
1983.

[32] S. Wake and S. Henry, "A Model Based on Software Quality Factors Which Pre-
dicts Maintainability," Proceedings of the Conference on Software Maintenance,

Phoenix, Arizona, pp. 382-387, October 24, 1988.

[33] S. S. Yau and J. S. Collofello, "Some Stability Measures for Software Mainte-
nance," IEEE Transactions on Software Engineering, vol. 6, no. 6, pp. 545 552,
November 1980.

[34] M. V. Zelkowitz, A. C. Shaw, and J. D. Grannon, Principles of Software Engi-
neering and Design, Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1979.

201

Table 1. Percentage of time spent on various maintenance tasks.

Maintenance tasks

Percentage of time spent

1977 1985 1987 1990

Enhancements 59 44 41 43

Corrections 22 15 18 16

Supporting users NA a 21 12 12

Reengineering N A N A 10 9

Adaptations 6 8 9 8

Documentation 6 N A 5 6

Tuning 4 N A 3 5

Evaluating requests NA 8 NA NA

Other 3 4 2 1

a Not applicable.

Table 2. Comptroller General statistics on
delivered software.

Quality of Percentage of

softwaa:e delivered software delivered

Could work on delivery 2

Could work after some rework 3

Never successfully put to use 45

Extensively reworked 20

Useless 30

Total 100

202

Table3.SoftwaremeasuresusedtoanalyzetheVRCsoftware.

Measure
Measure Measure definition

number

1 nl

2 n2

3 N_

4 N2

5 N

6

7 V

8 E

9 VGI

I0 VG2

11 LOC

12 B/C

13 <; >

14 SP

15 NCLOC

16 LB-ratio

Number of unique operators

Number of unique operands

Number of total operators

Number of total operands

Length (N1 + N2)

Estimated length = In a (log2 (nl)) + n2 (log2 (n2))]

Volume = (N)log2(n)= (NI + N2) log2(n, + n2)

Effort = V/[(2/rq)(n21N2)]

McCabe cyclomatic complexity (number of decisions + 1)

Extended complexity (decisions + ANDs + ORs +1)

Lines of code (includes blank and comment lines)

Number of blank lines + number of comment lines

Number of executable semicolons

Average maximum lines between variable references

Non-corrmmnted lines of code = LOC - B/C

[N,/(N2 + B/C)]

Table 4. OP-B, OP-C, and OP-D modules and the mean values of

the 16 measures.

Measure Measure OP-B (222 OP-C (224 OP-D (235
number modules) mean modules) mean modules) mean

1 nl 12 12 13

2 n2 12 12 15

3 N3 70 75 87

4 N2 42 44 52

5 N 113 119 140

6 IV 103 110 126

7 V 704 721 844

8 E 53,781 58,198 61,715

9 VG1 4 4 5

10 VG2 5 4 5

11 LOC 73 78 83

12 B/C 43 46 49

13 <; > 12 13 15

14 SP 5 5 6

15 NCLOC 30 31 34

16 LB-ratio 1 1 1

203

Table5.Thefactormatrixforthe16measuresofOP-C,OP-B,andOP-D.

Measure OP-B OP-C OP-D
Measure

number
Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

1 n] 0.78 --0.17 0.79 -0.12 0.78 -0.17

2 n2 0.94 -0.02 0.94 -0.02 0.93 -0.03

3 Nj 0.97 0.10 0.98 0.83 0.97 0.08

4 N2 0.97 0.06 0.97 0.04 0.96 -0.05

5 N 0.98 0.09 0.98 0.07 0.97 0.07

6 N 0.91 -0.01 0.96 -0.00 0.96 -0.01

7 V 0.96 0.14 0.97 0.09 0.96 0.09

8 E 0.89 0.22 0.90 0.15 0.88 0.15

9 VG1 0.94 0.09 0.95 0.08 0.93 0.10

10 VG2 0.77 0.12 0.95 0.07 0.93 0.10

11 LOC 0.94 -0.25 0.96 -0.17 0.95 -0.19

12 B/C 0.61 -0.64 0.72 -0.50 0.70 -0.53

13 <; > 0.97 0.03 0.97 0.04 0.97 0.06

14 SP 0.70 -0.05 0.60 -0.01 0.72 0.04

15 NCLOC 0.98 0.05 0.98 0.05 0.98 0.05

16 LB-ratio -0.03 0.83 -0.01 0.92 -0.02 0.90

Percentage

of explained

variability

90 10 91 9 91 9

Table 6. Five composite complexity models and their coefficients

of determination.

Model Coefficient of
Model

number determination, percent

1 <VG1 > = 1.48+0.005(V) R 2 =96

2 <VG_> = 0,510+0,136(NCLOC) R 2 =96

3 < VG1 > = 0.786 + O.O013(V) + O.0976(NCLOC) R 2 = 96

4 <V> = -206+29.5(NCLOC) R 2:99

5 <V> : -210+8.7(VGI)+28.3(NCLOC) R 2:99

204

Table7.Summaryofactualaveragevaluesof(VG1)andvaluespredictedbymodels1,2,and3.

Model Release

(V) value
Delta, Error percentage,

Actu_a, (A) Predicted, (P) (A) - (P) delta/(A)

OP-B 4.45 5.00 -0.55 -12.40

OP-C 4.53 5.09 - 0.56 - 12.40

OP-D 5.30 5.70 -0.40 -7.50

Grand average 4.76 5.26 -0.50 - 10.60

2 OP-B 4.45 4.59 -0.14 -3.10

OP-C 4.53 4.86 -0.33 -7.30

OP-D 5.30 5.27 -0.03 0.60

Grand average 4.76 4.91 -0.15 -3.10

3 OP-B 4.45 4.62 -0.17 -3.80

OP-C 4.53 4.84 -0.31 -6.80

OP-D 5.30 5.30 -0.00 0.00

Grand average 4.76 4.92 -0.16 -3.,10

Table 8. Summary of actual average values of (V) and values predicted by models 4 and 5.

Model Release

(V) value
Delta, Error percentage,

Actual, (A) Predicted, (P) (A)- (P) delta/(A)

OP-B 704 679 +25 +3.6

OP-C 722 738 -16 -2.2

OP-D 845 826 +19 +2.2

Grand average 757 748 +9 + 1.2

5 OP-B 704 678 +26 +3.7

OP-C 722 735 - 13 - 1.8

OP-D 845 826 +19 +2.2

Grand average 757 746 - 10 +1.3

2O5

Table9.Characteristicsoffourindependentsegments
ofsoftware.

Segment Number of
number modules

Actual average value

VG1 V NCLOC

1 16 16.4 3343 102

2 16 17.9 4016 139

3 50 8.16 1823 64

4 55 11.10 2212 71

Table 10. Sample calculation of actual average values of (VG1) and values predicted

by model 1 for segments 1-4.

Model

(V) value

Segment Delta, Error percentage,

Actual, (A) Predicted, (P) (A) - (P) delta/(A)

1 16.40 18.19 -1.79 -10.9

2 17.90 21.56 -3.66 -20.4

3 8.16 10.59 -2.03 -24.4

4 11.10 12.54 -1.44 -13.0

Grand average 13.39 15.72 -2.33 - 17.3

Table 11. Summary of actual grand average values of (VG1) and values predicted by

models 1, 2, and 3 for segments 1-4.

Model Segment

(VG1) grand average value
Delta, Error percentage,

Actual, (A) Predicted, (P) (A) - (P) delta/(A)

1 1-4 13.39 15.57 -2.33 -17.3

2 1 4 13.39 13.31 +0.08 +0.6

3 1-4 13.39 13.48 -0.09 +0.7

206

Table12.Summaryofactualgrandaveragevaluesof(V)and values predicted by

models 4 end 5 for segments 1-4.

Model

(VG1) grand average value

Segment Delta, Error percentage,

Actual, (.4) Predicted, (P) (A) - (P) delta/(A)

4 1-4 2848 2570 +278 +9.7

5 1-4 2848 2571 +277 +9.7

Table 13. Analysis of three software releases using the relative complexity metric.

Release

Total nuraber

of modules

Relative complexity

Total Maximum Minimum Median Mean
Standard

deviation

OP-B

OP-C

OP-D

222 2799 45 0.4 10.9 12.6

224 2837 45 0.4 10.9 12.7

235 3470 49 0.4 12.2 14.8

10.0

9.6

11.3

Table 14. Cut-off values of the three software releases.

Release

Number of Percentage of

Total number (RCM) modules exceeding modules over

of modules cut-off value (RCM) (RCM)

cut-off value cut-off value

OP-B 222 22.6 33.0 15.0

OP-C 224 22.3 36.0 16.0

OP-D 235 26.1 35.0 15.0

Table 15. Analysis of transitions between the three software releases.

Transition

Percentage of

Number of (RCM) modified modules

modules modified cut-off value over cut-off

value

Percentage of all
modules over cut-off

value that were

actually modified

From OP-t3 to 13 22.6 46 40

OP-C

From OP-C to 38 22.3 47 50

OP-D

207

SPECIFICATION
10%

DESIGN
15%

REQUIREMENTS CODE
10% 20%

INTEGRATION
TEST

2O% MODULE
TEST
25%

Fig. 1. The Initial cost breakdown In developing • new project.

MODULE TEST 8% INTEGRATION TEST 7%

CODE 7% _,...=_

SPECIFICATION 3%

REQUIREMENTS 3%

MAINTENANCE

Fig. 2. The cost of software during Its life cycle.

208

2O9

o 8

o,... o_ _ .,-- ;_ o_ - d
• o d d c_,o O,qo r_d oc_ d 'o d d d d 'o d _o

::._ _ _ _-_ _ _-_ _-_ _ o_-_°-0 . c_ . c5 c,, c5 c_ c_c5 d
Z - • c5 • '_ " ° ' • cS c5 o " • _o

_ _ _ _ _._ _ _ _ _ _ _ _ _-_" _ = _ _ _ d oo ° c_ • o d_.
oc:i. d • d • d . d • d oo dd d d d ' d --d d d

• " _o " . o
oo Oc_ Oc_ - " c_ do °" " c_ c5 . --c_ oc_ d d

2

_ _ == _ ,-., _ o N _ ,:, - _ _ o.°

c_ c_ o c_ oo c_ c_ o c5 _ o o .
• " • - o . ,

d d d c_ . c5 _d o

L_

c_ _0 .-- • :,0 _ "_--d o - o c_d d d o d d_
• d d d o o _d _.

_ _ o

_, o _0o d OoO _o° :_ _
• o o°. o 0 d o _o o .-,

_Ooo_oO_°ooo_°o_,O_o_Ooo°_ o o_'_o_o_o _-o ooo_oo_°_-_o_°_°_oo_ - °- o__ :_
b

_ _ _ _o _ °_ _ _- _o_o,o _0 Oo = _o _ _o° = d_• o d o . d o 0 d • . o E
d - d o d oo c5 o_ --o o o . oc_ d o o

0 00 C
-- 0

d> _ _ _ _ _ _ _o _ " " _ _ o o_ _
• " ' . _ . _ o c5 c_ - dc_ o o 0

od Oo oo oc, oo Oo --c_ oo o d c_ c_ _ (j

- __ -- _ _ _ _ -= d _
o_ c_ _ o_ § o_ _.do ":o d d '_

d c5 c_ d d c_ d d d c5 _o o

Z d d c5 --o o 0 d o c5 o o
d " d d c_ c_ d d o c5 o c_ o o _o o

z _ _ ._oo. o. _. o . o.o. o. . .
c5 ' ci d ' "

o o',
• o o o o-d • , " . . P',.,.4 d oo oo • oo

_, _- _ _ _-_- _ _ _ _ ___ -•o_ o _ _ _ _ _ o _
--c5 d • c_c5 C5c_ - c_ • 'c_ oo c_ o o c5 . c5 • " o ' o

U

210

• c5 ' o c5 0 o d ' o c5

o _ __ _ _ o o o _ _
_ _ --_ oo0c_- _ _ -

z ° " o d oo . do o d o o o _ °o° o• oo c5

_ _
o§ __ _ _ _ _ _ o

• . c5 . c5o --o o
oc5 d - o d c5 . d d oc5 Oc5 d o o ° o

oo o,o oc5 oo c5c5 do oo o o d c5o

- _ __ __ o_° _ __ _° _ _ _ _ °o ,-._ _ _
= _ _'_ _§ _- _ _ _ _ _ _ _ _

d d oo o d 0 d 0 d d_ d °_ -- d0 0

d d d d oO d o

d oo oo oo o ooo d ooo o§ o do d o o._ d

_ _ _ o

> °_ °o do oo oo oo Ooo oo° oo - o ooo

- _ _ _ _ _ -o_ _ _ _ __ _ _ _ _ o° _ o _, _ o or- E_o 0c _°o d ° c5o 0 c5 : d d_ '_ _ _-- o o_oo o Oo o o o o o o _ " c_ c5 _-
c5 o c5 o d o

_ 9 _ _ __ _ o° _ _ o_ _ _ _ _ o "Sx
_§ _ _ _ _°_ _ o°o _ _ _'-_o _,_ _ _oo o __

o .o _o o° "_.o 0
°d °c5 c_c5 °o d oo --o o oo ° :5 o o I:

- - -- - o_ - - -- o_ "
oo oc5 oo oc oo oc5 d oo ° oo c_ ° _o

o c_ o _ 0

_ _ _ _ § _ __ _ _ _ _ _ _ _ o
_. _ o _ - o °_ _ o° _ _ _

:_ d d do o -: d d c_ d_ o d _: o o_,_o iZd_o o oo o d d o d d °o '_
• d c5 o c:; c5 ,_ --d " " c_ o o

o _ _ o _o _ _ _ _ _ _ _ _ _,
-o d c5 oo o d O_ o,o _ oo .o

o_o d o d o o d d d d ° °_ d o

.... ,_ _ _
- - - o0 _ c_- _

o o o c5o c5o 0 . o 0 o_
d o o _5 o o o c5 o Oo oo o

_ _- _- _ _ _- _ _ _o _ _ _ ,_
§ " _o _ _c_ c_ ._:o o , d . c_ • c_ d o do '_ _ o°'_

• o d • o o d c5 '_ d . 0 c_

o _o _ o_ F- _ F_ _ _ _ _ _ o
_ _ _ _ _ :_ o_ _o

d
• • " • " - d

• . . _- o_
--o c_ " oc_ <5 ' c_ oo o c5 c_ . o d . ° " o ' o

u q _,

Z .._

211

IJJ

3
X

_'_ACTUAL _ PREDICTED

5.26

4.76 _ 4.76

r/#

rJ#

rJ,

rJ.

r/_ //J

r/_ //j

rl, //j

r/1 ///

r/_ /,i/

v/_ ///

r_, ///

1 2

MODEL

4.91 4.92

4.;6_

,'/j

rfj
rjj
r/]
rfj
rjj
r/j
"/t

V/t

3

1

Fig. 6. Actual average values of (VG1) and values predicted by
models 1, 2, end 3.

2O

15

13.39

10

5

i

ACTU_

r_a

rA"_

rJ._

f.f,i

_ PREDICTED

15.72

13.39177 _ 13.31 13.39
//

_/

//

/J

#.j.

//

//

//

_/

//

j'/

j./

2

MODEL

Fig. 8. Actual average values of (VG1) and values predicted by

models 1, 2, and 3 for Independent segments of software.

13.48

1200

900

LU

/

X 600

300

7"_ ACTUAL [_ PREDICTED

757

f_f_

t'/#

,-//
vl.

4

748
757

/'/#,

/'/j

/./J

/-/#

ff._.

MODEL

--_746

5

Fig. 7. Actual average values of (V) and values predicted by
models 4 end 5.

4O0O

3000

2000-

2848

E_ACTUAL _ PREDICTED

2848

_. / _ 2570

1000 _-_,

4

MODEL

rj'_

"_/z
7"Z

5

2570

Fig. 9. Actual average values of (V) and values predicted by

models 4 and 5 for Independent segments of software.

212

